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1 Introduction

The building block of our model is illustrated in Figure 1. Player 1 has an opportunity

to avoid or engage with player 2. If player 1 engages, player 2 can reciprocate player 1’s

engagement or cheat. If player 1 avoids player 2, the individual payoffs are 1 and 0, (leaving
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Figure 1: The Trust Game
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aside other-regarding preferences which we discuss below.) If player 1 engages and player 2

cheats, the payoffs are reversed, 0 and 1. If player 1 engages and player 2 reciprocates, each

side gets a benefit, b1 and b2. To make the game an interesting representation of the trust

problem, we assume both players prefer reciprocated engagement to avoidance, but player 2

might prefer to exploit.

Assumption 1 Both players prefer reciprocated engagement to avoidance, b1 > 1, b2 > 0

(leaving aside social preferences).

To model trust building between identity groups over time we need to extend the basic

trust game to consider identity groups, multiple rounds of play, social preferences, and

uncertainty about trustworthiness. To represent identity groups we increase the number of

players to four and divide them into two identity groups, the odds (players 1 and 3) and the

evens (players 2 and 4). To examine learning over time we consider a two round model. In

the first round, player 1 and player 2 play the trust game and in the second round, players 3

and 4 play the game again. For now, we assume that players 3 and 4 observe the first round
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Figure 2: The Trust Game with Social Preferences
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directly, so they know what players 1 and 2 did.

Third, we need to endow the players with other regarding preferences, allowing them

to like or dislike other players based on their group membership. We posit for each player

attachment parameters for members of their own group and for members of the outgroup.

For instance, player 1’s attachment for members of their own group, the odds, is denoted by

A1O and their attachment to members of the even group is A1E. The attachment parameters

modify the payoffs as shown in Figure 2.

We assume that individuals like their own group, so that, for instance, A1O is positive.

We also assume that attachment parameters are less than 1 (and greater than -1), so that

players do not derive more utility from other players than from their own material payoffs.

Individuals may like or dislike the other group, so that A1E could be positive or negative. We

assume that the players’ attachment parameters for their own group and the outgroup are

independent of each other, so ingroup love does not automatically imply outgroup hostility.

We also assume that they are fixed.
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Assumption 2 The attachment parameters for one’s own group are bounded by 0 and 1,

A1O, A2E, A3O, A4E ∈ [0, 1). The attachment parameters for the other group are bounded by

-1 and 1. A1E, A2O, A3E, A4O ∈ (−1, 1).

We posit two types for the even players, trustworthy and untrustworthy, where trustwor-

thy types reciprocate and untrustworthy types cheat. The types are differentiated by their

attachment parameters for the odd players. Let the even players’ attachment parameters for

the odd players take on one of two possible values, AtEO for the trustworthy type and AuEO

for the untrustworthy type.

Assumption 3 A2O and A4O can take on one of two values, AuEO and AtEO where −1 <

AuEO < AtEO < 1.

To model social learning, we assume that the even players’ types are correlated, but not

perfectly. This implies that if you see player 2 reciprocate, it increases your belief that player

4 will reciprocate, whereas if you see player 2 cheat, it makes you think player 4 is more

likely to cheat as well. Formally, let the outgroup attachment parameters for players 2 and

4 be independently drawn from a Bernoulli distribution such that there is a t chance that

the player is trustworthy, and has an attachment parameter equal to AtEO and a 1− t chance

that they are untrustworthy, and has an attachment parameter of AuEO. The probability t

is therefore the true probability that an even player is trustworthy. We assume that the

even players know their own type, and the true probability that their fellow even players are

trustworthy.
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Odd players, however, do not know the true likelihood that even players are trustworthy.

(Aside from the even players’ attachment for the odd players, and the true likelihood that

the even players are trustworthy, all other parameters in the game are common knowledge.)

So that learning may take place, let the true likelihood that an even player is trustworthy, t,

be distributed according to a β density with mean ν
ν+ω

where ν and ω are integers greater

than 0. When the game begins, the prior probability held by players 1 and 3 that an even

player is trustworthy is equal to the mean of the distribution.

tp =
ν

ν + ω
(1)

If 2 reciprocates in the first round, the posterior belief increases to

t′(R) =
ν + 1

ν + 1 + ω
. (2)

Conversely, if player 2 cheats, then the posterior belief falls to

t′(C) =
ν

ν + ω + 1
. (3)

The level of trust is higher after observing reciprocation than after observing cheating.

t′(C) < tp < t′(R) (4)
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2 The Even Players’ Choices

To ensure that the trustworthy type of player 4 reciprocates and the untrustworthy type

cheats, their attachment parameters must straddle the thresholds where reciprocating and

cheating yield equal payoffs, derived as follows.

If player 4 cheats they get 1 and if they reciprocate they get b4 +A4Ob3. These are equal

for the following level of attachment by player 4 for the odd players.

A∗4O ≡
1− b4
b3

(5)

In considering player 2, we need to consider whether the first round affects behavior in

the second round. If not, then player 2 need only consider the first round payoffs. Player

2 gets 1 from cheating and b2 + A2Ob1 from reciprocating, so the critical value is similar to

that for player 4.

A∗2O ≡
1− b2
b1

(6)

If the second round players will condition their behavior on what happened in the first

round, the condition is slightly more complicated. In equilibrium, the only way player 3 will

condition their behavior on player 2 is to engage if 2 reciprocates and avoid if 2 cheats. The

reverse pattern is impossible because then the type of player 2 with the lower attachment

for the odd group would reciprocate when the one with the higher attachment cheats, which

is not incentive compatible.
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With this in mind, if player 2 cheats they will get 1 in the first round. Player 3 will then

avoid player 4 in the second round so player 2 will get A2O in the second round. Player 2’s

total payoff from cheating is therefore 1+A2O. If player 2 reciprocates, they will get b2+A2Ob1

in the first round. Player 3 will engage, and so player 4 will reciprocate with probability t

and cheat with probability 1− t.1 The payoff for reciprocating is therefore b2 + A2Ob1 from

the first round and t(A2Eb4 +A2Ob3) + (1− t)A2E from the second. Reciprocation gives the

same payoff as cheating if the following holds,

Payoff for Cheating = Payoff for Reciprocating

1 + A2O = b2 + A2Ob1 + t(A2Eb4 + A2Ob3) + (1− t)A2E

1− b2 − tA2Eb4 − (1− t)A2E = A2O(b1 + tb3 − 1)

1− b2 − A2E(1 + t(b4 − 1)) = A2O(b1 + tb3 − 1)

which gives the following value of A2O.

A†2O ≡
1− b2 − A2E(1 + t(b4 − 1))

b1 + tb3 − 1
(7)

The following assumption sums up what is needed for the even players’ behavior.

Assumption 4 The trustworthy types of the even players will reciprocate while the untrust-

worthy types will cheat, −1 < AuEO < A∗4O, A
∗
2O, A

†
2O < AtEO < 1.

1We assume that player 2 knows the true distribution of types in the even group so its belief that player
4 is the low hostility type is t.
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Table 1: Possible Strategy Profiles for the Odd Players

After 1 Avoids After 1 En-
gages and 2
Reciprocates

After 1 En-
gages and 2
Cheats

Name Player 1 Player 3
1 1E, 3EEE Engage Engage Engage Engage
2 1E, 3EEA Engage Engage Engage Avoid
3 1E, 3EAE Engage Engage Avoid Engage
4 1E, 3EAA Engage Engage Avoid Avoid
5 1E, 3AEE Engage Avoid Engage Engage
6 1E, 3AEA Engage Avoid Engage Avoid
7 1E, 3AAE Engage Avoid Avoid Engage
8 1E, 3AAA Engage Avoid Avoid Avoid
9 1A, 3EEE Avoid Engage Engage Engage
10 1A, 3EEA Avoid Engage Engage Avoid
11 1A, 3EAE Avoid Engage Avoid Engage
12 1A, 3EAA Avoid Engage Avoid Avoid
13 1A, 3AEE Avoid Avoid Engage Engage
14 1A, 3AEA Avoid Avoid Engage Avoid
15 1A, 3AAE Avoid Avoid Avoid Engage
16 1A, 3AAA Avoid Avoid Avoid Avoid

3 Equilibria in the Model

We solve the model for Perfect Bayesian Equilibria, in which actors choose the best strategy

given their beliefs and update their beliefs in accordance with Bayes’ rule wherever possible.

The behavior of the even players is determined by the assumptions made above. There

remains the behavior of the odd players to account for. There are sixteen possible strategy

profiles for the odd players to consider, as shown in Table 1. Player 1 chooses to avoid or

engage, then player 3 must have a choice for what to do if player 1 avoids, player 1 engages

and player 2 reciprocates, and player 1 engages and player 2 cheats.
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Consider player 3’s choice. Let t′ be player 3’s belief about the likelihood of facing a

trustworthy player 4 when it must choose. Player 3 gets 1 for avoiding player 4. If player

3 engages, there is a t′ chance that player 4 reciprocates and a 1 − t′ chance that player 4

cheats, for a payoff of t′(b3 +A3Eb4) + (1− t′)A3E. Player 3 compares the following payoffs.

Payoff for Avoiding = Payoff for Engaging

1 = t′(b3 + A3Eb4) + (1− t′)A3E

These payoffs are equal for the following threshold for player 3’s attachment to the even

players.

A∗3E(t
′) =

1− t′b3
1− t′(1− b4)

(8)

There are three possible levels of belief that player 3 may have, ordered as follows.

t′(C) < tp < t′(R)

A∗3E(t
′) is decreasing in t′, that is, the more trusting player 3 is, the less attached to the

outgroup they need to be to cooperate. Therefore there are three different values for the

engagement threshold as a function of player 3’s beliefs, as follows.

A∗3E(t
′(R)) < A∗3E(t

p)) < A∗3E(t
′(C)) (9)

If A3E < A∗3E(t
′(R)), then player 3 will not engage even after observing player 2 recip-
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rocate. If A3E ∈ {A∗3E(t′(R)), A∗3E(tp))} then player 3 will engage only if they see player

2 reciprocate. If A3E ∈ {A∗3E(tp), A∗3E(t′(C)), )}, then player 3 will engage unless they see

player 2 cheat. Finally, if A3E > A∗3E(t
′(C)), they will engage even if they see player 2 cheat.

These considerations serve to eliminate some of the rows in Table 1. Those highlighted

in red feature player 3 avoiding after player 1 engages and 2 reciprocates, and engaging after

player 1 engages and player 2 cheats, which is not possible. Those in pink feature player 3

engaging after player 2 cheats and avoiding when player 1 avoids, when player 3 has its prior

beliefs, which is also not possible. Finally, the rows in yellow have player 3 avoiding after

player 2 reciprocates and engaging with no new information after player 1 avoids. All these

patterns are incompatible with the previous conditions on player 3’s beliefs and strategies.

We consider the remaining eight cases below.

3.1 Profile 1

In this case player 1 and 3 engage no matter what. The condition for player 3 is the following.

A∗3E(t
′(C)) ≤ A3E (10)

For player 1, avoidance gives a payoff of 1, and engaging gives a payoff of tp(b1 + A1Eb2) +

(1− tp)(A1E). The payoff in the second round is the same either way and so does not affect
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the calculation. We set these equal to each other and solve for a threshold level.

Payoff for Avoiding = Payoff for Engaging

1 = tp(b1 + A1Eb2) + (1− tp)(A1E)

A∗1E =
1− tpb1

1− tp(1− b2)

Player 1 will choose to engage if the following holds.

A∗1E ≤ A1E (11)

3.2 Profile 2

Here player 1 engages and player 3 engages unless player 2 cheats. The condition for player

3 is the following.

A∗3E(t
p) ≤ A3E ≤ A∗3E(t

′(C)) (12)

For player 1, avoidance gives 1 in the first round. Avoidance would send the game off the

equilibrium path, but I assume that player 3’s beliefs about player 4 remain unchanged by

player 1’s behavior. In the second round, player 3 will engage and the payoff for player 1 is

therefore tp(A1Ob3 + A1Eb4) + (1− tp)A1E. If player 1 engages, player 2 may reciprocate or

cheat, for a first round payoff of tp(b1 + A1Eb2) + (1− tp)A1E. If player 2 reciprocates, then

player 3 will engage, and player 1 will get t′(R)(A1Ob3 + A1Eb4) + (1− t′(R))A1E. If player

2 cheats, player 3 will avoid, and player 1 will get A1O. We set the payoffs equal to solve for
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the threshold level of A1E.

Payoff for Avoiding = Payoff for Engaging

1 + tp(A1Ob3 + A1Eb4) + (1− tp)A1E = tp[b1 + A1Eb2 + t′(R)(A1Ob3 + A1Eb4) +

(1− t′(R))A1E] + (1− tp)(A1E + A1O)

1 + tp(A1Ob3 + A1Eb4) = tp[b1 + A1Eb2 + t′(R)(A1Ob3 + A1Eb4) + (1− t′(R))A1E]

+(1− tp)A1O

1 + tpA1Ob3 − tpb1 − tpt′(R)A1Ob3 − (1− tp)A1O = −tpA1Eb4 + tp[A1Eb2 + t′(R)A1Eb4

+(1− t′(R))A1E]

A†1E =
1− tpb1 + A1O(t

pb3 − tpt′(R)b3 − (1− tp))
tp[−b4 + b2 + t′(R)b4 + 1− t′(R)]

A†1E =
1− tpb1 + A1O(t

pb3(1− t′(R))− (1− tp))
tpb2 + tp(1− b4)(1− t′(R))
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For the equilibrium to hold, it must be the case that the following holds.

A†1E ≤ A1E (13)

3.3 Profile 6

This is the reassurance equilibrium. The condition for player 3 is the following.

A∗3E(t
′(R)) ≤ A3E ≤ A∗3E(t

p) (14)

If player 1 avoids player 2 in the first round, they get a payoff of 1 and in the second

round player 3 will avoid player 4 as well, for a payoff of A1O. Conversely, if player 1 engages

in the first round, there is a tp chance that player 2 reciprocates, which will give a payoff of

b1 +A1Eb2 for the first round. In the second round, player 3 will also engage which will give

player 1 a payoff of t′(R)(A1Ob3 + A1Eb4) + (1 − t′(R))A1E. On the other hand, there is a

1− tp chance that player 2 will cheat, giving a first round payoff of A1E and causing player

3 to avoid player 4, giving A1O in the second round. The payoff for engaging is therefore the

same as in the previous case.

tp[b1 + A1Eb2 + t′(R)(A1Ob3 + A1Eb4) + (1− t′(R))A1E] + (1− tp)(A1E + A1O)
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We set the payoff for avoiding equal to that for engaging and solve for the threshold.

Payoff for Avoiding = Payoff for Engaging

1 + A1O = tp[b1 + A1Eb2 + t′(R)(A1Ob3 + A1Eb4)

+(1− t′(R))A1E] + (1− tp)(A1E + A1O)

1− A1E = tp[b1 + A1Eb2 + t′(R)(A1Ob3 + A1Eb4)

+(1− t′(R))A1E − (A1E + A1O)]

1− tp(b1 − A1O(t
′(R)b3 − 1)) = A1E + tpA1E(b2 + t′(R)b4 − t′(R))

The relation can be solved for a condition on player 1’s attachment to the even players.

A‡1E =
1− tp(b1 + A1O(1− t′(R)b3))
1− tp(t′(R)(1− b4)− b2)

(15)

The following condition must hold.

A‡1E ≤ A1E (16)
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3.4 Profile 8

Here player 1 engages and player 3 avoids no matter what. The condition for player 3 is the

following.

A3E ≤ A∗3E(t
′(R)) (17)

For player 1, avoiding gives a payoff of 1 + A1O while engaging gives a payoff of tp(b1 +

A1Eb2) + (1− tp)A1E + A1O. We set these equal to each other and solve for the threshold.

Payoff for Avoiding = Payoff for Engaging

1 + A1O = tp(b1 + A1Eb2) + (1− tp)A1E + A1O

1− tpb1 = A1E(t
pb2 + 1− tp)

A∗1E =
1− tpb1

1− tp(1− b2)

This is the same threshold as in Profile 1, and the equilibrium is possible if the following

holds.

A∗1E ≤ A1E (18)

Now we turn to the profiles in which player 1 avoids.
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3.5 Profile 9

In this case player 1 avoids and player 3 engages no matter what. The condition for player

3 is the same as in profile 1.

A∗3E(t
′(C)) ≤ A3E (19)

The condition for player 1 is the opposite of that in profile 1.

A1E ≤ A∗1E (20)

3.6 Profile 10

Here player 1 avoids and player 3 engages unless player 2 cheats. The condition for player 3

is the same as in profile 2.

A∗3E(t
p) ≤ A3E ≤ A∗3E(t

′(C)) (21)

The condition for player 1 is the opposite of that in profile 2.

A1E ≤ A†1E (22)
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3.7 Profile 14

Here player 1 avoids and player 3 engages only if player 2 reciprocates. The condition for

player 3 is the same as profile 6.

A∗3E(t
′(R)) ≤ A3E ≤ A∗3E(t

p) (23)

The condition for player 1 is the opposite of profile 6.

A1E ≤ A‡1E (24)

3.8 Profile 16

Finally, in profile 16 both player 1 and 2 avoid in all circumstances. The conditions are as

follows.

A3E ≤ A∗3E(t
′(R)) (25)

A1E ≤ A∗1E (26)

4 The Model with Communication

Consider a variant of the previous game in which players 3 and 4 do not observe what

happened in the first round, but player 1 can communicate to player 3 about whether player
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2 reciprocated or not. That is, after the first round is over, player 1 can say “2R” meaning

that player 2 reciprocated, or “2C” to indicate that 2 cheated. The game is otherwise

identical. When can player 1 be relied on to tell the truth to player 3 about what happened

in the first round?

Note, this question is only relevant if player 1 is willing to engage in the first place, and

if player 3 is willing in principle to condition their behavior on what player 2 does. The two

possibilities are profiles 2 and 6.

If player 1 says that player 2 cheated, player 3 will avoid player 4, giving player 1 a payoff

of A1O for the second round. If player 1 says player 2 reciprocated, player 3 will engage, and

player 4 will reciprocate if trustworthy, which results in a payoff of t′(A1Ob3 +A1Eb4) + (1−

t′)A1E for player 1. Player 1 must prefer to say that player 2 cheated when they did and

reciprocated when they did, so the following conditions must hold.

A1O > t′(C)(A1Ob3 + A1Eb4) + (1− t′(C))A1E

A1O < t′(R)(A1Ob3 + A1Eb4) + (1− t′(R))A1E

These conditions can be solved for a constraint on player 1’s attachment for the outgroup

as a function of their attachment for the ingroup. To be honest when player 2 cheated, the

following must hold.

A1O > t′(C)(A1Ob3 + A1Eb4) + (1− t′(C))A1E

A1O − t′(C)A1Ob3 > t′(C)(A1Eb4) + (1− t′(C))A1E
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A1O(1− t′(C)b3) > A1E(t
′(C)b4 + 1− t′(C))

A1O
1− t′(C)b3

1− t′(C)(1− b4)
> A1E

A1E ≤ A1OA
∗
3E(t

′(C)) (27)

To be honest when player 2 reciprocated, it must be the case that the following holds.

A1OA
∗
3E(t

′(R)) ≤ A1E (28)

5 The Equilibria Illustrated

The equilibria are illustrated in Figure 3. The horizontal axis is player 1’s attachment for

the outgroup, A1E, and the vertical axis is player 3’s attachment to the outgroup, A3E. Both

range from -1 to 1, where higher values signify being more friendly to the outgroup. The

parameters underlying the cutpoints are shown in Table 2.

The labels for the equilibria first list player 1’s strategy, Avoid or Engage, and then

Player 3’s strategy, in the case where player 1 avoids, where player 1 engages and Player 2

reciprocates, and where player 1 engages and player 2 cheats.

In the top right corner is equilibrium 1E, 3EEE, where player 1 engages and player 3

engages no matter what happens in the first round. This is pattern 1 in Table 1. It is
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Table 2: The Parameters and Cutpoints

Parameter Value
b1 2
b2 0.5
b3 2
b4 0.5
ν 1
ω 1
tp 0.5
t′(R) 0.66666
t′(C) 0.33333
A1O 0.5

Cutpoint Value
A∗3E(t

′(R)) -0.49997
A∗3E(t

p) 0.0
A∗3E(t

′(C)) 0.39998
A∗1E 0.0
A†1E -0.24998
A‡1E 0.0769
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feasible when both player 1 and player 3 are positive towards the out group. Moving down is

equilibrium 1E, 3EEA, where player 1 engages and player 3 engages unless observing player

2 cheat. In this case player 3 is willing to engage based on their prior beliefs, and so does

not need reassurance.

Moving down once more, we have equilibrium 1E, 3AEA, where player 1 engages and

player 3 engages only if observing player 2 reciprocate. Here player 3 needs reassurance to be

willing to engage, and a successful interaction in round 1 provides that reassurance. Moving

down to the lower right hand corner, is equilibrium 1E, 3AAA, where player 1 engages, but

player 3 avoids even if they see player 2 reciprocate. In this case, player 3 is too negative

towards the even group to cooperate, even after getting good information about them.

On the left hand side are the corresponding equilibria where player 1 avoids.

In the center, between the dotted lines, is the region in which player 1 can honestly

communicate with player 3 about what happened in the first round.
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Figure 3: The Equilibria in the Game
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